Artificial Intelligence with PHP
  • Getting Started
    • Introduction
    • Audience
    • How to Read This Book
    • Glossary
    • Contributors
    • Resources
    • Changelog
  • Artificial Intelligence
    • Introduction
    • Overview of AI
      • History of AI
      • How Does AI Work?
      • Structure of AI
      • Will AI Take Over the World?
      • Types of AI
        • Limited Memory AI
        • Reactive AI
        • Theory of Mind AI
        • Self-Aware AI
    • AI Capabilities in PHP
      • Introduction to LLM Agents PHP SDK
      • Overview of AI Libraries in PHP
    • AI Agents
      • Introduction to AI Agents
      • Structure of AI Agent
      • Components of AI Agents
      • Types of AI Agents
      • AI Agent Architecture
      • AI Agent Environment
      • Application of Agents in AI
      • Challenges in AI Agent Development
      • Future of AI Agents
      • Turing Test in AI
      • LLM AI Agents
        • Introduction to LLM AI Agents
        • Implementation in PHP
          • Sales Analyst Agent
          • Site Status Checker Agent
    • Theoretical Foundations of AI
      • Introduction to Theoretical Foundations of AI
      • Problem Solving in AI
        • Introduction
        • Types of Search Algorithms
          • Comparison of Search Algorithms
          • Informed (Heuristic) Search
            • Global Search
              • Beam Search
              • Greedy Search
              • Iterative Deepening A* Search
              • A* Search
                • A* Graph Search
                • A* Graph vs A* Tree Search
                • A* Tree Search
            • Local Search
              • Hill Climbing Algorithm
                • Introduction
                • Best Practices and Optimization
                • Practical Applications
                • Implementation in PHP
              • Simulated Annealing Search
              • Local Beam Search
              • Genetic Algorithms
              • Tabu Search
          • Uninformed (Blind) Search
            • Global Search
              • Bidirectional Search (BDS)
              • Breadth-First Search (BFS)
              • Depth-First Search (DFS)
              • Iterative Deepening Depth-First Search (IDDFS)
              • Uniform Cost Search (UCS)
            • Local Search
              • Depth-Limited Search (DLS)
              • Random Walk Search (RWS)
          • Adversarial Search
          • Means-Ends Analysis
      • Knowledge & Uncertainty in AI
        • Knowledge-Based Agents
        • Knowledge Representation
          • Introduction
          • Approaches to KR in AI
          • The KR Cycle in AI
          • Types of Knowledge in AI
          • KR Techniques
            • Logical Representation
            • Semantic Network Representation
            • Frame Representation
            • Production Rules
        • Reasoning in AI
        • Uncertain Knowledge Representation
        • The Wumpus World
        • Applications and Challenges
      • Cybernetics and AI
      • Philosophical and Ethical Foundations of AI
    • Mathematics for AI
      • Computational Theory in AI
      • Logic and Reasoning
        • Classification of Logics
        • Formal Logic
          • Propositional Logic
            • Basics of Propositional Logic
            • Implementation in PHP
          • Predicate Logic
            • Basics of Predicate Logic
            • Implementation in PHP
          • Second-order and Higher-order Logic
          • Modal Logic
          • Temporal Logic
        • Informal Logic
        • Semi-formal Logic
      • Set Theory and Discrete Mathematics
      • Decision Making in AI
    • Key Application of AI
      • AI in Astronomy
      • AI in Agriculture
      • AI in Automotive Industry
      • AI in Data Security
      • AI in Dating
      • AI in E-commerce
      • AI in Education
      • AI in Entertainment
      • AI in Finance
      • AI in Gaming
      • AI in Healthcare
      • AI in Robotics
      • AI in Social Media
      • AI in Software Development
      • AI in Adult Entertainment
      • AI in Criminal Justice
      • AI in Criminal World
      • AI in Military Domain
      • AI in Terrorist Activities
      • AI in Transforming Our World
      • AI in Travel and Transport
    • Practice
  • Machine Learning
    • Introduction
    • Overview of ML
      • History of ML
        • Origins and Early Concepts
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • Key Terms and Principles
      • Machine Learning Life Cycle
      • Problems and Challenges
    • ML Capabilities in PHP
      • Overview of ML Libraries in PHP
      • Configuring an Environment for PHP
        • Direct Installation
        • Using Docker
        • Additional Notes
      • Introduction to PHP-ML
      • Introduction to Rubix ML
    • Mathematics for ML
      • Linear Algebra
        • Scalars
          • Definition and Operations
          • Scalars with PHP
        • Vectors
          • Definition and Operations
          • Vectors in Machine Learning
          • Vectors with PHP
        • Matrices
          • Definition and Types
          • Matrix Operations
          • Determinant of a Matrix
          • Inverse Matrices
          • Cofactor Matrices
          • Adjugate Matrices
          • Matrices in Machine Learning
          • Matrices with PHP
        • Tensors
          • Definition of Tensors
          • Tensor Properties
            • Tensor Types
            • Tensor Dimension
            • Tensor Rank
            • Tensor Shape
          • Tensor Operations
          • Practical Applications
          • Tensors in Machine Learning
          • Tensors with PHP
        • Linear Transformations
          • Introduction
          • LT with PHP
          • LT Role in Neural Networks
        • Eigenvalues and Eigenvectors
        • Norms and Distances
        • Linear Algebra in Optimization
      • Calculus
      • Probability and Statistics
      • Information Theory
      • Optimization Techniques
      • Graph Theory and Networks
      • Discrete Mathematics and Combinatorics
      • Advanced Topics
    • Data Fundamentals
      • Data Types and Formats
        • Data Types
        • Structured Data Formats
        • Unstructured Data Formats
        • Implementation with PHP
      • General Data Processing
        • Introduction
        • Storage and Management
          • Data Security and Privacy
          • Data Serialization and Deserialization in PHP
          • Data Versioning and Management
          • Database Systems for AI
          • Efficient Data Storage Techniques
          • Optimizing Data Retrieval for AI Algorithms
          • Big Data Considerations
            • Introduction
            • Big Data Techniques in PHP
      • ML Data Processing
        • Introduction
        • Types of Data in ML
        • Stages of Data Processing
          • Data Acquisition
            • Data Collection
            • Ethical Considerations in Data Preparation
          • Data Cleaning
            • Data Cleaning Examples
            • Data Cleaning Types
            • Implementation with PHP
          • Data Transformation
            • Data Transformation Examples
            • Data Transformation Types
            • Implementation with PHP ?..
          • Data Integration
          • Data Reduction
          • Data Validation and Testing
            • Data Splitting and Sampling
          • Data Representation
            • Data Structures in PHP
            • Data Visualization Techniques
          • Typical Problems with Data
    • ML Algorithms
      • Classification of ML Algorithms
        • By Methods Used
        • By Learning Types
        • By Tasks Resolved
        • By Feature Types
        • By Model Depth
      • Supervised Learning
        • Regression
          • Linear Regression
            • Types of Linear Regression
            • Finding Best Fit Line
            • Gradient Descent
            • Assumptions of Linear Regression
            • Evaluation Metrics for Linear Regression
            • How It Works by Math
            • Implementation in PHP
              • Multiple Linear Regression
              • Simple Linear Regression
          • Polynomial Regression
            • Introduction
            • Implementation in PHP
          • Support Vector Regression
        • Classification
        • Recommendation Systems
          • Matrix Factorization
          • User-Based Collaborative Filtering
      • Unsupervised Learning
        • Clustering
        • Dimension Reduction
        • Search and Optimization
        • Recommendation Systems
          • Item-Based Collaborative Filtering
          • Popularity-Based Recommendations
      • Semi-Supervised Learning
        • Regression
        • Classification
        • Clustering
      • Reinforcement Learning
      • Distributed Learning
    • Integrating ML into Web
      • Open-Source Projects
      • Introduction to EasyAI-PHP
    • Key Applications of ML
    • Practice
  • Neural Networks
    • Introduction
    • Overview of NN
      • History of NN
      • Basic Components of NN
        • Activation Functions
        • Connections and Weights
        • Inputs
        • Layers
        • Neurons
      • Problems and Challenges
      • How NN Works
    • NN Capabilities in PHP
    • Mathematics for NN
    • Types of NN
      • Classification of NN Types
      • Linear vs Non-Linear Problems in NN
      • Basic NN
        • Simple Perceptron
        • Implementation in PHP
          • Simple Perceptron with Libraries
          • Simple Perceptron with Pure PHP
      • NN with Hidden Layers
      • Deep Learning
      • Bayesian Neural Networks
      • Convolutional Neural Networks (CNN)
      • Recurrent Neural Networks (RNN)
    • Integrating NN into Web
    • Key Applications of NN
    • Practice
  • Natural Language Processing
    • Introduction
    • Overview of NLP
      • History of NLP
        • Ancient Times
        • Medieval Period
        • 15th-16th Century
        • 17th-18th Century
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • NLP and Text
      • Key Concepts in NLP
      • Common Challenges in NLP
      • Machine Learning Role in NLP
    • NLP Capabilities in PHP
      • Overview of NLP Libraries in PHP
      • Other Popular Tools for NLP
      • Challenges in NLP with PHP
    • Mathematics for NLP
    • NLP Processing Methods
      • NLP Workflow
      • Text Preprocessing
      • Feature Extraction Techniques
      • Distributional Semantics
      • Categories of NLP Models
        • Pure Statistical Models
        • Neural Models
        • Notable Models
      • Advanced NLP Topics
    • Integrating NLP into Web
    • Key Applications of NLP
    • Practice
  • Computer Vision
    • Introduction
  • Overview of CV
    • History of CV
    • Common Use Cases
  • CV Capabilities in PHP
  • Mathematics for CV
  • CV Techniques
  • Integrating CV into Web
  • Key Applications of CV
  • Practice
  • Robotics
    • Introduction
  • Overview of Robotics
    • History and Evolution of Robotics
    • Core Components
      • Sensors (Perception)
      • Actuators (Action)
      • Controllers (Processing and Logic)
    • The Role of AI in Robotics
      • Object Detection and Recognition
      • Path Planning and Navigation
      • Decision Making and Learning
  • Robotics Capabilities in PHP
  • Mathematics for Robotics
  • Building Robotics
  • Integration Robotics into Web
  • Key Applications of Robotics
  • Practice
  • Expert Systems
    • Introduction
    • Overview of ES
      • History of ES
        • Origins and Early ES
        • Milestones in the Evolution of ES
        • Expert Systems in Modern AI
      • Core Components and Architecture
      • Challenges and Limitations
      • Future Trends
    • ES Capabilities in PHP
    • Mathematics for ES
    • Building ES
      • Knowledge Representation Approaches
      • Inference Mechanisms
      • Best Practices for Knowledge Base Design and Inference
    • Integration ES into Web
    • Key Applications of ES
    • Practice
  • Cognitive Computing
    • Introduction
    • Overview of CC
      • History of CC
      • Differences Between CC and AI
    • CC Compatibilities in PHP
    • Mathematics for CC
    • Building CC
      • Practical Implementation
    • Integration CC into Web
    • Key Applications of CC
    • Practice
  • AI Ethics and Safety
    • Introduction
    • Overview of AI Ethics
      • Core Principles of AI Ethics
      • Responsible AI Development
      • Looking Ahead: Ethical AI Governance
    • Building Ethics & Safety AI
      • Fairness, Bias, and Transparency
        • Bias in AI Models
        • Model Transparency and Explainability
        • Auditing, Testing, and Continuous Monitoring
      • Privacy and Security in AI
        • Data Privacy and Consent
        • Safety Mechanisms in AI Integration
        • Preventing and Handling AI Misuse
      • Ensuring AI Accountability
        • Ethical AI in Decision Making
        • Regulations & Compliance
        • AI Risk Assessment
    • Key Applications of AI Ethics
    • Practice
  • Epilog
    • Summing-up
Powered by GitBook
On this page
  1. Artificial Intelligence
  2. AI Agents
  3. LLM AI Agents
  4. Implementation in PHP

Sales Analyst Agent

Coding Sales Analyst Agent in PHP

This agent can provide you following:

  • Generate sales report

  • Get sales analysis

  • Get recommendations

Step 1: Create Agent class

For this example, let’s create SalesAnalysisAgent class.

SalesAnalysisAgent class
namespace app\public\include\classes\llmagents\salesanalysis;

use app\public\include\classes\llmagents\salesanalysis\tools\GenerateSalesReportTool;
use app\public\include\classes\llmagents\salesanalysis\tools\AnalyzeSalesDataTool;
use app\public\include\classes\llmagents\salesanalysis\tools\ForecastFutureSalesTool;
use LLM\Agents\Agent\Agent;
use LLM\Agents\Agent\AgentAggregate;
use LLM\Agents\Solution\MetadataType;
use LLM\Agents\Solution\Model;
use LLM\Agents\Solution\SolutionMetadata;
use LLM\Agents\Solution\ToolLink;

final class SalesAnalysisAgent extends AgentAggregate {
    public const DEFAULT_MODEL = 'gpt-4o-mini';
    public const NAME = 'sales_analysis';

    public static function create(string $model = self::DEFAULT_MODEL): self {
        $agent = new Agent(
            key: self::NAME,
            name: 'Sales Analysis Agent',
            description: 'This agent specializes in analyzing sales data, identifying trends, and providing actionable insights to improve sales performance. It can process historical sales data, generate comprehensive reports, and forecast future sales based on existing patterns.',
            instruction: 'You are a sales analysis assistant. Your primary goal is to help users analyze their sales data and extract valuable insights. Use the provided tools to analyze sales data, generate detailed reports, and forecast future sales trends when appropriate. Always aim to provide clear, data-driven insights that can help users make informed business decisions and improve their sales strategies.',
        );

        $aggregate = new self($agent);

        $aggregate->addMetadata(
        // Instructions
            new SolutionMetadata(
                type: MetadataType::Memory,
                key: 'data_driven_analysis',
                content: 'Base all your analyses on the provided data. Avoid making assumptions without supporting evidence.',
            ),
            new SolutionMetadata(
                type: MetadataType::Memory,
                key: 'identify_patterns',
                content: 'Look for meaningful patterns and trends in the sales data, such as seasonal fluctuations, growth rates, and customer behavior patterns.',
            ),
            new SolutionMetadata(
                type: MetadataType::Memory,
                key: 'contextual_insights',
                content: 'Provide insights that consider the specific industry and business context when analyzing sales data.',
            ),
            new SolutionMetadata(
                type: MetadataType::Memory,
                key: 'actionable_recommendations',
                content: 'Always include actionable recommendations based on your analysis that users can implement to improve their sales performance.',
            ),
            new SolutionMetadata(
                type: MetadataType::Memory,
                key: 'explain_technical_terms',
                content: 'Provide clear explanations of technical terms and metrics for users who may not be familiar with advanced sales analytics concepts.',
            ),
            new SolutionMetadata(
                type: MetadataType::Memory,
                key: 'comprehensive_analysis',
                content: 'Consider multiple factors in your analysis, including product performance, customer segments, regional variations, and time-based trends.',
            ),

            // Prompts examples
            new SolutionMetadata(
                type: MetadataType::Prompt,
                key: 'basic_analysis',
                content: 'Can you analyze my quarterly sales data from the last 2 years?',
            ),
            new SolutionMetadata(
                type: MetadataType::Prompt,
                key: 'forecast_request',
                content: 'Based on my historical sales data, what should I expect for the upcoming holiday season?',
            ),

            new SolutionMetadata(
                type: MetadataType::Configuration,
                key: 'max_tokens',
                content: 4000,
            ),
        );

        $aggregate->addAssociation(
            new Model(model: $model)
        );

        // Abilities of the agent
        $aggregate->addAssociation(new ToolLink(name: GenerateSalesReportTool::NAME));
        $aggregate->addAssociation(new ToolLink(name: AnalyzeSalesDataTool::NAME));
        $aggregate->addAssociation(new ToolLink(name: ForecastFutureSalesTool::NAME));

        return $aggregate;
    }

    public function getInputParamDescription(): array {
        $descriptions = [
            'reportPath' => 'The path to report file',
        ];

        return $descriptions;
    }

    /**
     * Always require URL parameter for both tools
     * @param $properties
     * @param $required
     * @return void
     */
    public function addRequiredParams(&$properties, &$required) {
        // Always require URL parameter for both tools
        if (!isset($properties['reportPath'])) {
            $properties['reportPath'] = [
                'type' => 'string',
                'description' => 'The path to report file'
            ];
            $required[] = 'url';
        }
    }

    public function getRequiredArgument():string {
        return 'reportPath';
    }
}

Step 2: Create Tools and Associate Then With an Agent

Create GenerateSalesReportTool. This tool generates comprehensive sales reports based on provided data, time period, and report type.

GenerateSalesReportTool class
namespace app\public\include\classes\llmagents\salesanalysis\tools;

use LLM\Agents\Tool\PhpTool;

/**
 * @extends PhpTool<GenerateSalesReportInput>
 */
final class GenerateSalesReportTool extends PhpTool {
    public const NAME = 'generate_sales_report';

    public function __construct() {
        parent::__construct(
            name: self::NAME,
            inputSchema: GenerateSalesReportInput::class,
            description: 'This tool generates comprehensive sales reports based on provided data, time period, and report type.',
        );
    }

    public function execute(object $input): string {
        // Validate input data path
        if (!\file_exists(APP_PATH . $input->reportPath)) {
            return \json_encode([
                'success' => false,
                'error' => 'Sales data file not found',
                'message' => "The file at path '" . APP_PATH . $input->reportPath . "' does not exist.",
            ]);
        }

        // Generate the appropriate report based on type
        $report = file_get_contents(APP_PATH . $input->reportPath);

        return \json_encode([
            'success' => true,
            'report_type' => $input->reportType ?? 'standard',
            'report_data' => $report,
        ]);
    }
}

Create AnalyzeSalesDataTool. This tool analyzes sales data to identify trends, patterns, and key insights that can help improve business performance.

Create ForecastFutureSalesTool. This tool forecasts future sales based on historical data using various forecasting models.

Step 3: Associate Agent with Tools

Associate SalesAnalysisAgent with these tools.

$aggregate->addAssociation(new ToolLink(name: GenerateSalesReportTool::NAME));
$aggregate->addAssociation(new ToolLink(name: AnalyzeSalesDataTool::NAME));
$aggregate->addAssociation(new ToolLink(name: ForecastFutureSalesTool::NAME));

Step 4: Run Code by Executor and Get Result

Now we're ready to run agent and see the result.

PreviousImplementation in PHPNextSite Status Checker Agent

Last updated 2 months ago