Introduction

1. Understanding Linear Mappings Between Vector Spaces

Definition

A linear transformation is a mapping between two vector spaces that preserves vector addition and scalar multiplication. In simple terms, linear transformations ensure that the structure of a vector space is maintained during the mapping.

Mathematically, a function T:VWT:V→W between two vector spaces VV and WW (over the same field, such as real numbers R\mathbb{R}) that satisfies two main properties::

  1. Additivity (preserves vector addition): T(u+v)=T(u)+T(v),u,vVT(u + v) = T(u) + T(v), \quad \forall u, v \in V.\

  2. Homogeneity (preserves scalar multiplication): T(cu)=cT(u),cR,uV.T(c u) = c T(u), \quad \forall c \in \mathbb{R}, u \in V.

These two properties ensure that a linear transformation maintains the "linear structure" of a vector space, such as straight lines, scalar multiples, and sums.

Matrix Representation of Linear Transformations

Any linear transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m can be represented as a matrix ARm×nA \in \mathbb{R}^{m \times n}:

T(x)=Ax,T(x) = Ax,

where xRn\mathbf{x} \in \mathbb{R}^n n is the input vector, and 𝐴𝐴 is the transformation matrix.


Example 1:

If T:R2R2T: \mathbb{R}^2 \to \mathbb{R}^2 is defined as T([xy])=[2x3y]T\left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x \\ 3y \end{bmatrix}

it is a linear transformation because it satisfies both vector addition and scalar multiplication.

Example 2:

(Simple Scaling Transformation)

If T:R2R2T: \mathbb{R}^2 \to \mathbb{R}^2 scales a vector x=[xy]\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, then: T([xy])=[2x3y]T\left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x \\ 3y \end{bmatrix}

For x=[12]\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, the output is: T([12])=[2132]=[26]T\left( \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 2 \cdot 1 \\ 3 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}

Visualization of a Scaling Transformation

Scaling transforms a square grid, stretching it vertically and horizontally:

Original Grid
Scaled Grid (2x, 3y)

chevron-rightStep by step explanationhashtag
  1. Original Grid:

    • A standard coordinate system with equal spacing

    • The point (1,2) marked in red

    • Grid lines for reference

  2. Scaled Grid:

    • The same coordinate system after applying the transformation

    • The transformed point (2,6) marked in blue

    • Grid lines showing the scaling effect (2x horizontal, 3y vertical)

    • Reference axes remaining in original position

You can clearly see how the transformation stretches the grid, with:

  • Horizontal spacing doubled (2x scaling in x-direction)

  • Vertical spacing tripled (3y scaling in y-direction)

The example point moves from (1,2) to (2,6), demonstrating how the transformation affects individual points in the space.

Example 3:

Let T:R2R2T: \mathbb{R}^2 \to \mathbb{R}^2 be defined as: T([xy])=[3x+2yx+4y].T\left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 3x + 2y \\ -x + 4y \end{bmatrix}.

This transformation can be expressed using a matrix: A=[3214].A = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}.

Given , the transformation is:

T(x)=Ax=[3214][12]T(x) = Ax = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}

Perform the multiplication:

T(x)=[3(1)+2(2)1(1)+4(2)]=[77].T(x) = \begin{bmatrix} 3(1) + 2(2) \\ -1(1) + 4(2) \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}.

Visualization of the Transformation

Original Vector
Transformed Vector

The original grid is distorted based on the transformation matrix AA, stretching and rotating the space.

chevron-rightStep by step explanationhashtag

Let's start with the given transformation matrix A and walk through how it transforms [1, 2] to [7, 7].

  1. The transformation matrix A is:

  2. When we multiply matrix A by vector [1, 2], we get:

  3. Let's calculate each component:

    • First component (x-coordinate):

      • 3(1) + 2(2)

      • = 3 + 4

      • = 7

    • Second component (y-coordinate):

      • -1(1) + 4(2)

      • = -1 + 8

      • = 7

  4. Therefore:

This shows how the linear transformation A maps the vector [1, 2] to [7, 7]. The transformation stretches and rotates the original vector in such a way that the resulting vector has coordinates [7, 7].


2. Mathematical Properties of Linear Transformations

A linear transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m has the following properties:

  1. Zero Vector Mapping: The zero vector in VV always maps to the zero vector in WW: T(0)=0T(0) = 0\

  2. Preservation of Linear Combinations: For vectors u,vVu, v \in V and scalars a,bRa, b \in \mathbb{R}: T(au+bv)=aT(u)+bT(v)T(au + bv) = aT(u) + bT(v)\

  3. Kernel (Null Space): The set of all vectors that map to the zero vector: Ker(T)={xV:T(x)=0}\text{Ker}(T) = \{ x \in V : T(x) = 0 \}\

  4. Image (Range): The set of all vectors in WW that are outputs of TT: Im(T)={T(x):xV}\text{Im}(T) = \{ T(x) : x \in V \}

3. Geometric Interpretation

  • Scaling stretches or compresses vectors.

  • Rotation changes the direction of vectors.

  • Reflection mirrors vectors across an axis.

Visualization

Below are visualizations of common transformations:

Scaling Transformation
Rotation Transformation
Reflection Transformation

4. Application of Matrices in Transforming Data

Linear transformations can be efficiently represented as matrix multiplications. For a transformation TT represented by matrix AA:

T(x)=AxT(x) = Ax


Example 1:

The rotation matrix rotates vectors by an angle θ\theta:

A=[cosθsinθsinθcosθ]A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}

For θ=90\theta = 90^\circ:

A=[0110]A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}

Rotating x=[10]x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}:

Ax=[0110][10]=[01]Ax = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}

Original Grid
Rotated Grid (90°)

Last updated