Artificial Intelligence with PHP
  • Getting Started
    • Introduction
    • Audience
    • How to Read This Book
    • Glossary
    • Contributors
    • Resources
    • Changelog
  • Artificial Intelligence
    • Introduction
    • Overview of AI
      • History of AI
      • How Does AI Work?
      • Structure of AI
      • Will AI Take Over the World?
      • Types of AI
        • Limited Memory AI
        • Reactive AI
        • Theory of Mind AI
        • Self-Aware AI
    • AI Capabilities in PHP
      • Introduction to LLM Agents PHP SDK
      • Overview of AI Libraries in PHP
    • AI Agents
      • Introduction to AI Agents
      • Structure of AI Agent
      • Components of AI Agents
      • Types of AI Agents
      • AI Agent Architecture
      • AI Agent Environment
      • Application of Agents in AI
      • Challenges in AI Agent Development
      • Future of AI Agents
      • Turing Test in AI
      • LLM AI Agents
        • Introduction to LLM AI Agents
        • Implementation in PHP
          • Sales Analyst Agent
          • Site Status Checker Agent
    • Theoretical Foundations of AI
      • Introduction to Theoretical Foundations of AI
      • Problem Solving in AI
        • Introduction
        • Types of Search Algorithms
          • Comparison of Search Algorithms
          • Informed (Heuristic) Search
            • Global Search
              • Beam Search
              • Greedy Search
              • Iterative Deepening A* Search
              • A* Search
                • A* Graph Search
                • A* Graph vs A* Tree Search
                • A* Tree Search
            • Local Search
              • Hill Climbing Algorithm
                • Introduction
                • Best Practices and Optimization
                • Practical Applications
                • Implementation in PHP
              • Simulated Annealing Search
              • Local Beam Search
              • Genetic Algorithms
              • Tabu Search
          • Uninformed (Blind) Search
            • Global Search
              • Bidirectional Search (BDS)
              • Breadth-First Search (BFS)
              • Depth-First Search (DFS)
              • Iterative Deepening Depth-First Search (IDDFS)
              • Uniform Cost Search (UCS)
            • Local Search
              • Depth-Limited Search (DLS)
              • Random Walk Search (RWS)
          • Adversarial Search
          • Means-Ends Analysis
      • Knowledge & Uncertainty in AI
        • Knowledge-Based Agents
        • Knowledge Representation
          • Introduction
          • Approaches to KR in AI
          • The KR Cycle in AI
          • Types of Knowledge in AI
          • KR Techniques
            • Logical Representation
            • Semantic Network Representation
            • Frame Representation
            • Production Rules
        • Reasoning in AI
        • Uncertain Knowledge Representation
        • The Wumpus World
        • Applications and Challenges
      • Cybernetics and AI
      • Philosophical and Ethical Foundations of AI
    • Mathematics for AI
      • Computational Theory in AI
      • Logic and Reasoning
        • Classification of Logics
        • Formal Logic
          • Propositional Logic
            • Basics of Propositional Logic
            • Implementation in PHP
          • Predicate Logic
            • Basics of Predicate Logic
            • Implementation in PHP
          • Second-order and Higher-order Logic
          • Modal Logic
          • Temporal Logic
        • Informal Logic
        • Semi-formal Logic
      • Set Theory and Discrete Mathematics
      • Decision Making in AI
    • Key Application of AI
      • AI in Astronomy
      • AI in Agriculture
      • AI in Automotive Industry
      • AI in Data Security
      • AI in Dating
      • AI in E-commerce
      • AI in Education
      • AI in Entertainment
      • AI in Finance
      • AI in Gaming
      • AI in Healthcare
      • AI in Robotics
      • AI in Social Media
      • AI in Software Development
      • AI in Adult Entertainment
      • AI in Criminal Justice
      • AI in Criminal World
      • AI in Military Domain
      • AI in Terrorist Activities
      • AI in Transforming Our World
      • AI in Travel and Transport
    • Practice
  • Machine Learning
    • Introduction
    • Overview of ML
      • History of ML
        • Origins and Early Concepts
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • Key Terms and Principles
      • Machine Learning Life Cycle
      • Problems and Challenges
    • ML Capabilities in PHP
      • Overview of ML Libraries in PHP
      • Configuring an Environment for PHP
        • Direct Installation
        • Using Docker
        • Additional Notes
      • Introduction to PHP-ML
      • Introduction to Rubix ML
    • Mathematics for ML
      • Linear Algebra
        • Scalars
          • Definition and Operations
          • Scalars with PHP
        • Vectors
          • Definition and Operations
          • Vectors in Machine Learning
          • Vectors with PHP
        • Matrices
          • Definition and Types
          • Matrix Operations
          • Determinant of a Matrix
          • Inverse Matrices
          • Cofactor Matrices
          • Adjugate Matrices
          • Matrices in Machine Learning
          • Matrices with PHP
        • Tensors
          • Definition of Tensors
          • Tensor Properties
            • Tensor Types
            • Tensor Dimension
            • Tensor Rank
            • Tensor Shape
          • Tensor Operations
          • Practical Applications
          • Tensors in Machine Learning
          • Tensors with PHP
        • Linear Transformations
          • Introduction
          • LT with PHP
          • LT Role in Neural Networks
        • Eigenvalues and Eigenvectors
        • Norms and Distances
        • Linear Algebra in Optimization
      • Calculus
      • Probability and Statistics
      • Information Theory
      • Optimization Techniques
      • Graph Theory and Networks
      • Discrete Mathematics and Combinatorics
      • Advanced Topics
    • Data Fundamentals
      • Data Types and Formats
        • Data Types
        • Structured Data Formats
        • Unstructured Data Formats
        • Implementation with PHP
      • General Data Processing
        • Introduction
        • Storage and Management
          • Data Security and Privacy
          • Data Serialization and Deserialization in PHP
          • Data Versioning and Management
          • Database Systems for AI
          • Efficient Data Storage Techniques
          • Optimizing Data Retrieval for AI Algorithms
          • Big Data Considerations
            • Introduction
            • Big Data Techniques in PHP
      • ML Data Processing
        • Introduction
        • Types of Data in ML
        • Stages of Data Processing
          • Data Acquisition
            • Data Collection
            • Ethical Considerations in Data Preparation
          • Data Cleaning
            • Data Cleaning Examples
            • Data Cleaning Types
            • Implementation with PHP
          • Data Transformation
            • Data Transformation Examples
            • Data Transformation Types
            • Implementation with PHP ?..
          • Data Integration
          • Data Reduction
          • Data Validation and Testing
            • Data Splitting and Sampling
          • Data Representation
            • Data Structures in PHP
            • Data Visualization Techniques
          • Typical Problems with Data
    • ML Algorithms
      • Classification of ML Algorithms
        • By Methods Used
        • By Learning Types
        • By Tasks Resolved
        • By Feature Types
        • By Model Depth
      • Supervised Learning
        • Regression
          • Linear Regression
            • Types of Linear Regression
            • Finding Best Fit Line
            • Gradient Descent
            • Assumptions of Linear Regression
            • Evaluation Metrics for Linear Regression
            • How It Works by Math
            • Implementation in PHP
              • Multiple Linear Regression
              • Simple Linear Regression
          • Polynomial Regression
            • Introduction
            • Implementation in PHP
          • Support Vector Regression
        • Classification
        • Recommendation Systems
          • Matrix Factorization
          • User-Based Collaborative Filtering
      • Unsupervised Learning
        • Clustering
        • Dimension Reduction
        • Search and Optimization
        • Recommendation Systems
          • Item-Based Collaborative Filtering
          • Popularity-Based Recommendations
      • Semi-Supervised Learning
        • Regression
        • Classification
        • Clustering
      • Reinforcement Learning
      • Distributed Learning
    • Integrating ML into Web
      • Open-Source Projects
      • Introduction to EasyAI-PHP
    • Key Applications of ML
    • Practice
  • Neural Networks
    • Introduction
    • Overview of NN
      • History of NN
      • Basic Components of NN
        • Activation Functions
        • Connections and Weights
        • Inputs
        • Layers
        • Neurons
      • Problems and Challenges
      • How NN Works
    • NN Capabilities in PHP
    • Mathematics for NN
    • Types of NN
      • Classification of NN Types
      • Linear vs Non-Linear Problems in NN
      • Basic NN
        • Simple Perceptron
        • Implementation in PHP
          • Simple Perceptron with Libraries
          • Simple Perceptron with Pure PHP
      • NN with Hidden Layers
      • Deep Learning
      • Bayesian Neural Networks
      • Convolutional Neural Networks (CNN)
      • Recurrent Neural Networks (RNN)
    • Integrating NN into Web
    • Key Applications of NN
    • Practice
  • Natural Language Processing
    • Introduction
    • Overview of NLP
      • History of NLP
        • Ancient Times
        • Medieval Period
        • 15th-16th Century
        • 17th-18th Century
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • NLP and Text
      • Key Concepts in NLP
      • Common Challenges in NLP
      • Machine Learning Role in NLP
    • NLP Capabilities in PHP
      • Overview of NLP Libraries in PHP
      • Challenges in NLP with PHP
    • Mathematics for NLP
    • NLP Techniques
      • Basic Text Processing with PHP
      • NLP Workflow
      • Popular Tools and Frameworks for NLP
      • Techniques and Algorithms in NLP
        • Basic NLP Techniques
        • Advanced NLP Techniques
      • Advanced NLP Topics
    • Integrating NLP into Web
    • Key Applications of NLP
    • Practice
  • Computer Vision
    • Introduction
  • Overview of CV
    • History of CV
    • Common Use Cases
  • CV Capabilities in PHP
  • Mathematics for CV
  • CV Techniques
  • Integrating CV into Web
  • Key Applications of CV
  • Practice
  • Robotics
    • Introduction
  • Overview of Robotics
    • History and Evolution of Robotics
    • Core Components
      • Sensors (Perception)
      • Actuators (Action)
      • Controllers (Processing and Logic)
    • The Role of AI in Robotics
      • Object Detection and Recognition
      • Path Planning and Navigation
      • Decision Making and Learning
  • Robotics Capabilities in PHP
  • Mathematics for Robotics
  • Building Robotics
  • Integration Robotics into Web
  • Key Applications of Robotics
  • Practice
  • Expert Systems
    • Introduction
    • Overview of ES
      • History of ES
        • Origins and Early ES
        • Milestones in the Evolution of ES
        • Expert Systems in Modern AI
      • Core Components and Architecture
      • Challenges and Limitations
      • Future Trends
    • ES Capabilities in PHP
    • Mathematics for ES
    • Building ES
      • Knowledge Representation Approaches
      • Inference Mechanisms
      • Best Practices for Knowledge Base Design and Inference
    • Integration ES into Web
    • Key Applications of ES
    • Practice
  • Cognitive Computing
    • Introduction
    • Overview of CC
      • History of CC
      • Differences Between CC and AI
    • CC Compatibilities in PHP
    • Mathematics for CC
    • Building CC
      • Practical Implementation
    • Integration CC into Web
    • Key Applications of CC
    • Practice
  • AI Ethics and Safety
    • Introduction
    • Overview of AI Ethics
      • Core Principles of AI Ethics
      • Responsible AI Development
      • Looking Ahead: Ethical AI Governance
    • Building Ethics & Safety AI
      • Fairness, Bias, and Transparency
        • Bias in AI Models
        • Model Transparency and Explainability
        • Auditing, Testing, and Continuous Monitoring
      • Privacy and Security in AI
        • Data Privacy and Consent
        • Safety Mechanisms in AI Integration
        • Preventing and Handling AI Misuse
      • Ensuring AI Accountability
        • Ethical AI in Decision Making
        • Regulations & Compliance
        • AI Risk Assessment
    • Key Applications of AI Ethics
    • Practice
  • Epilog
    • Summing-up
Powered by GitBook
On this page
  • The Structure
  • Key Terms in the Structure of an AI Agent
  • The Percept Sequence
  • The Action
  • Conclusion
  1. Artificial Intelligence
  2. AI Agents

Structure of AI Agent

PreviousIntroduction to AI AgentsNextComponents of AI Agents

Last updated 1 month ago

The Structure

To understand the structure of an AI agent, it's essential to grasp the concepts of architecture and agent programs. These two elements form the foundation upon which an AI agent operates, defining how it interacts with its environment, processes information, and takes actions.

The primary task of AI is to design an agent program that implements the agent function. The structure of an intelligent agent can be summarized as:

Agent = Architecture + Agent Program

This formula shows that an AI agent is a combination of the physical or virtual machinery it runs on (architecture) and the software that drives its behavior (agent program). Together, these components allow an AI agent to perceive its environment, reason, and act.

Key Terms in the Structure of an AI Agent

There are three key terms involved in understanding the structure of an AI agent:

1. Architecture

The architecture refers to the physical or virtual machinery that the AI agent executes on. This includes all the hardware and software systems necessary for sensing, processing, and acting in an environment. It could be as simple as a computer or as complex as a robotic car outfitted with various sensors and actuators.

For example:

  • A robotic car has sensors like cameras and radar to perceive its surroundings and actuators like motors to move or change direction.

  • A virtual assistant runs on a computer and takes inputs such as voice commands, then generates outputs like spoken responses or actions.

The architecture provides the foundation that supports the agent's ability to interact with its environment.

2. Agent Function

The agent function is a formal description of the mapping between the agent’s perceptions and the actions it should take. The agent function takes a sequence of perceptions, known as the percept sequence, and outputs an action.

Mathematically, the agent function can be written as:

f: P → A*

Where:

  • P* represents the percept sequence, which is the complete history of everything the agent has perceived up to the current moment.

  • A represents the actions the agent can take in response to those perceptions.

In simpler terms, the agent function tells the AI agent how to behave based on its entire history of perceptions.

3. Agent Program

The agent program is the actual software implementation of the agent function. It runs on the architecture and uses the agent function to map the percept sequence to an action. The agent program processes the inputs from the environment (perceptions) and applies the logic defined by the agent function to determine the appropriate action.

For example:

  • In a robotic car, the agent program might process sensor data like the distance to obstacles and the speed of the car, and then decide whether to accelerate, turn, or stop.

  • In a virtual assistant, the agent program might take user commands and map them to actions such as sending a message or setting a reminder.

The agent program executes on the architecture, allowing the AI agent to interact with and adapt to its environment.

The Percept Sequence

The percept sequence is the history of everything the agent has perceived up to the present moment. This is critical because the agent does not make decisions based solely on the current input but also considers all past experiences. This accumulation of information allows the agent to make more informed decisions, which is particularly important in dynamic or unpredictable environments.

For instance:

  • A robotic car navigating a city street uses its percept sequence to remember the location of obstacles or traffic patterns, helping it to anticipate upcoming events and act more effectively.

The Action

Once the agent program processes the percept sequence using the agent function, the agent takes an action via its actuators. The nature of these actions depends on the architecture:

  • A robotic car might accelerate, turn, or brake based on the processed data.

  • A virtual assistant might send a message, display information, or execute a function within an application.

This action component closes the perception-action loop, where the agent constantly updates its percept sequence, processes it, and acts accordingly.

Example: A Self-Driving Car as an AI Agent

To better understand the structure, consider a self-driving car as an AI agent. The car’s architecture includes sensors like cameras and radar, a central computer to process data, and actuators that control the car's steering, acceleration, and braking. The agent program, running on the car’s computer, takes input from the percept sequence — such as current speed, traffic signals, and nearby obstacles—and uses the agent function to determine the best action, like slowing down, speeding up, or turning.

This process happens continuously as the agent navigates through its environment, ensuring the car operates safely and efficiently.

Conclusion

The structure of an AI agent is a combination of its architecture (the machinery it runs on) and its agent program (the software that maps perceptions to actions using the agent function). This combination allows the AI agent to perceive, reason, and act in its environment. By taking into account the percept sequence (the history of all perceptions), the agent can make more informed and intelligent decisions, adjusting its behavior to achieve its goals.

The formula Agent = Architecture + Agent Program serves as a concise representation of how AI agents operate. Designing effective AI systems requires a deep understanding of this structure, as it enables the creation of agents that can learn, adapt, and interact with their environment in meaningful ways.

Structure of AI Agent