Artificial Intelligence with PHP
  • Getting Started
    • Introduction
    • Audience
    • How to Read This Book
    • Glossary
    • Contributors
    • Resources
    • Changelog
  • Artificial Intelligence
    • Introduction
    • Overview of AI
      • History of AI
      • How Does AI Work?
      • Structure of AI
      • Will AI Take Over the World?
      • Types of AI
        • Limited Memory AI
        • Reactive AI
        • Theory of Mind AI
        • Self-Aware AI
    • AI Capabilities in PHP
      • Introduction to LLM Agents PHP SDK
      • Overview of AI Libraries in PHP
    • AI Agents
      • Introduction to AI Agents
      • Structure of AI Agent
      • Components of AI Agents
      • Types of AI Agents
      • AI Agent Architecture
      • AI Agent Environment
      • Application of Agents in AI
      • Challenges in AI Agent Development
      • Future of AI Agents
      • Turing Test in AI
      • LLM AI Agents
        • Introduction to LLM AI Agents
        • Implementation in PHP
          • Sales Analyst Agent
          • Site Status Checker Agent
    • Theoretical Foundations of AI
      • Introduction to Theoretical Foundations of AI
      • Problem Solving in AI
        • Introduction
        • Types of Search Algorithms
          • Comparison of Search Algorithms
          • Informed (Heuristic) Search
            • Global Search
              • Beam Search
              • Greedy Search
              • Iterative Deepening A* Search
              • A* Search
                • A* Graph Search
                • A* Graph vs A* Tree Search
                • A* Tree Search
            • Local Search
              • Hill Climbing Algorithm
                • Introduction
                • Best Practices and Optimization
                • Practical Applications
                • Implementation in PHP
              • Simulated Annealing Search
              • Local Beam Search
              • Genetic Algorithms
              • Tabu Search
          • Uninformed (Blind) Search
            • Global Search
              • Bidirectional Search (BDS)
              • Breadth-First Search (BFS)
              • Depth-First Search (DFS)
              • Iterative Deepening Depth-First Search (IDDFS)
              • Uniform Cost Search (UCS)
            • Local Search
              • Depth-Limited Search (DLS)
              • Random Walk Search (RWS)
          • Adversarial Search
          • Means-Ends Analysis
      • Knowledge & Uncertainty in AI
        • Knowledge-Based Agents
        • Knowledge Representation
          • Introduction
          • Approaches to KR in AI
          • The KR Cycle in AI
          • Types of Knowledge in AI
          • KR Techniques
            • Logical Representation
            • Semantic Network Representation
            • Frame Representation
            • Production Rules
        • Reasoning in AI
        • Uncertain Knowledge Representation
        • The Wumpus World
        • Applications and Challenges
      • Cybernetics and AI
      • Philosophical and Ethical Foundations of AI
    • Mathematics for AI
      • Computational Theory in AI
      • Logic and Reasoning
        • Classification of Logics
        • Formal Logic
          • Propositional Logic
            • Basics of Propositional Logic
            • Implementation in PHP
          • Predicate Logic
            • Basics of Predicate Logic
            • Implementation in PHP
          • Second-order and Higher-order Logic
          • Modal Logic
          • Temporal Logic
        • Informal Logic
        • Semi-formal Logic
      • Set Theory and Discrete Mathematics
      • Decision Making in AI
    • Key Application of AI
      • AI in Astronomy
      • AI in Agriculture
      • AI in Automotive Industry
      • AI in Data Security
      • AI in Dating
      • AI in E-commerce
      • AI in Education
      • AI in Entertainment
      • AI in Finance
      • AI in Gaming
      • AI in Healthcare
      • AI in Robotics
      • AI in Social Media
      • AI in Software Development
      • AI in Adult Entertainment
      • AI in Criminal Justice
      • AI in Criminal World
      • AI in Military Domain
      • AI in Terrorist Activities
      • AI in Transforming Our World
      • AI in Travel and Transport
    • Practice
  • Machine Learning
    • Introduction
    • Overview of ML
      • History of ML
        • Origins and Early Concepts
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • Key Terms and Principles
      • Machine Learning Life Cycle
      • Problems and Challenges
    • ML Capabilities in PHP
      • Overview of ML Libraries in PHP
      • Configuring an Environment for PHP
        • Direct Installation
        • Using Docker
        • Additional Notes
      • Introduction to PHP-ML
      • Introduction to Rubix ML
    • Mathematics for ML
      • Linear Algebra
        • Scalars
          • Definition and Operations
          • Scalars with PHP
        • Vectors
          • Definition and Operations
          • Vectors in Machine Learning
          • Vectors with PHP
        • Matrices
          • Definition and Types
          • Matrix Operations
          • Determinant of a Matrix
          • Inverse Matrices
          • Cofactor Matrices
          • Adjugate Matrices
          • Matrices in Machine Learning
          • Matrices with PHP
        • Tensors
          • Definition of Tensors
          • Tensor Properties
            • Tensor Types
            • Tensor Dimension
            • Tensor Rank
            • Tensor Shape
          • Tensor Operations
          • Practical Applications
          • Tensors in Machine Learning
          • Tensors with PHP
        • Linear Transformations
          • Introduction
          • LT with PHP
          • LT Role in Neural Networks
        • Eigenvalues and Eigenvectors
        • Norms and Distances
        • Linear Algebra in Optimization
      • Calculus
      • Probability and Statistics
      • Information Theory
      • Optimization Techniques
      • Graph Theory and Networks
      • Discrete Mathematics and Combinatorics
      • Advanced Topics
    • Data Fundamentals
      • Data Types and Formats
        • Data Types
        • Structured Data Formats
        • Unstructured Data Formats
        • Implementation with PHP
      • General Data Processing
        • Introduction
        • Storage and Management
          • Data Security and Privacy
          • Data Serialization and Deserialization in PHP
          • Data Versioning and Management
          • Database Systems for AI
          • Efficient Data Storage Techniques
          • Optimizing Data Retrieval for AI Algorithms
          • Big Data Considerations
            • Introduction
            • Big Data Techniques in PHP
      • ML Data Processing
        • Introduction
        • Types of Data in ML
        • Stages of Data Processing
          • Data Acquisition
            • Data Collection
            • Ethical Considerations in Data Preparation
          • Data Cleaning
            • Data Cleaning Examples
            • Data Cleaning Types
            • Implementation with PHP
          • Data Transformation
            • Data Transformation Examples
            • Data Transformation Types
            • Implementation with PHP ?..
          • Data Integration
          • Data Reduction
          • Data Validation and Testing
            • Data Splitting and Sampling
          • Data Representation
            • Data Structures in PHP
            • Data Visualization Techniques
          • Typical Problems with Data
    • ML Algorithms
      • Classification of ML Algorithms
        • By Methods Used
        • By Learning Types
        • By Tasks Resolved
        • By Feature Types
        • By Model Depth
      • Supervised Learning
        • Regression
          • Linear Regression
            • Types of Linear Regression
            • Finding Best Fit Line
            • Gradient Descent
            • Assumptions of Linear Regression
            • Evaluation Metrics for Linear Regression
            • How It Works by Math
            • Implementation in PHP
              • Multiple Linear Regression
              • Simple Linear Regression
          • Polynomial Regression
            • Introduction
            • Implementation in PHP
          • Support Vector Regression
        • Classification
        • Recommendation Systems
          • Matrix Factorization
          • User-Based Collaborative Filtering
      • Unsupervised Learning
        • Clustering
        • Dimension Reduction
        • Search and Optimization
        • Recommendation Systems
          • Item-Based Collaborative Filtering
          • Popularity-Based Recommendations
      • Semi-Supervised Learning
        • Regression
        • Classification
        • Clustering
      • Reinforcement Learning
      • Distributed Learning
    • Integrating ML into Web
      • Open-Source Projects
      • Introduction to EasyAI-PHP
    • Key Applications of ML
    • Practice
  • Neural Networks
    • Introduction
    • Overview of NN
      • History of NN
      • Basic Components of NN
        • Activation Functions
        • Connections and Weights
        • Inputs
        • Layers
        • Neurons
      • Problems and Challenges
      • How NN Works
    • NN Capabilities in PHP
    • Mathematics for NN
    • Types of NN
      • Classification of NN Types
      • Linear vs Non-Linear Problems in NN
      • Basic NN
        • Simple Perceptron
        • Implementation in PHP
          • Simple Perceptron with Libraries
          • Simple Perceptron with Pure PHP
      • NN with Hidden Layers
      • Deep Learning
      • Bayesian Neural Networks
      • Convolutional Neural Networks (CNN)
      • Recurrent Neural Networks (RNN)
    • Integrating NN into Web
    • Key Applications of NN
    • Practice
  • Natural Language Processing
    • Introduction
    • Overview of NLP
      • History of NLP
        • Ancient Times
        • Medieval Period
        • 15th-16th Century
        • 17th-18th Century
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • NLP and Text
      • Key Concepts in NLP
      • Common Challenges in NLP
      • Machine Learning Role in NLP
    • NLP Capabilities in PHP
      • Overview of NLP Libraries in PHP
      • Challenges in NLP with PHP
    • Mathematics for NLP
    • NLP Techniques
      • Basic Text Processing with PHP
      • NLP Workflow
      • Popular Tools and Frameworks for NLP
      • Techniques and Algorithms in NLP
        • Basic NLP Techniques
        • Advanced NLP Techniques
      • Advanced NLP Topics
    • Integrating NLP into Web
    • Key Applications of NLP
    • Practice
  • Computer Vision
    • Introduction
  • Overview of CV
    • History of CV
    • Common Use Cases
  • CV Capabilities in PHP
  • Mathematics for CV
  • CV Techniques
  • Integrating CV into Web
  • Key Applications of CV
  • Practice
  • Robotics
    • Introduction
  • Overview of Robotics
    • History and Evolution of Robotics
    • Core Components
      • Sensors (Perception)
      • Actuators (Action)
      • Controllers (Processing and Logic)
    • The Role of AI in Robotics
      • Object Detection and Recognition
      • Path Planning and Navigation
      • Decision Making and Learning
  • Robotics Capabilities in PHP
  • Mathematics for Robotics
  • Building Robotics
  • Integration Robotics into Web
  • Key Applications of Robotics
  • Practice
  • Expert Systems
    • Introduction
    • Overview of ES
      • History of ES
        • Origins and Early ES
        • Milestones in the Evolution of ES
        • Expert Systems in Modern AI
      • Core Components and Architecture
      • Challenges and Limitations
      • Future Trends
    • ES Capabilities in PHP
    • Mathematics for ES
    • Building ES
      • Knowledge Representation Approaches
      • Inference Mechanisms
      • Best Practices for Knowledge Base Design and Inference
    • Integration ES into Web
    • Key Applications of ES
    • Practice
  • Cognitive Computing
    • Introduction
    • Overview of CC
      • History of CC
      • Differences Between CC and AI
    • CC Compatibilities in PHP
    • Mathematics for CC
    • Building CC
      • Practical Implementation
    • Integration CC into Web
    • Key Applications of CC
    • Practice
  • AI Ethics and Safety
    • Introduction
    • Overview of AI Ethics
      • Core Principles of AI Ethics
      • Responsible AI Development
      • Looking Ahead: Ethical AI Governance
    • Building Ethics & Safety AI
      • Fairness, Bias, and Transparency
        • Bias in AI Models
        • Model Transparency and Explainability
        • Auditing, Testing, and Continuous Monitoring
      • Privacy and Security in AI
        • Data Privacy and Consent
        • Safety Mechanisms in AI Integration
        • Preventing and Handling AI Misuse
      • Ensuring AI Accountability
        • Ethical AI in Decision Making
        • Regulations & Compliance
        • AI Risk Assessment
    • Key Applications of AI Ethics
    • Practice
  • Epilog
    • Summing-up
Powered by GitBook
On this page
  • 1. Mathematical Definition
  • 2. Mathematical Examples by Dimensionality
  • 3. Mathematical Operations with Shapes
  • 4. Special Tensor Shapes in Mathematics
  • 5. Applications with Specific Shapes
  • 6. Shape Transformations
  1. Machine Learning
  2. Mathematics for ML
  3. Linear Algebra
  4. Tensors
  5. Tensor Properties

Tensor Shape

1. Mathematical Definition

The shape of a tensor is an ordered tuple (n₁, n₂, ..., nₖ) where each nᵢ represents the size of the i-th dimension. It describes the number of elements along each dimension of the tensor.

2. Mathematical Examples by Dimensionality

2.1 Scalar (Shape: ())

Shape: ()

Example: 5

Components: Single value

2.2 Vector (Shape: (n))

Shape: (3)

Example: v=[123]v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}v=​123​​

Basis vectors in ℝ³: e1=[100],e2=[010],e3=[001]e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}e1​=​100​​,e2​=​010​​,e3​=​001​​

2.3 Matrix (Shape: (m,n))

Shape: (2,3)

Example: A=[123456]A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}A=[14​25​36​]

Shape: (3,3)

Identity Matrix: I=[100010001]I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I=​100​010​001​​

2.4 3D Tensor (Shape: (l,m,n))

Shape: (2,2,3)

Example: T=[[123456],[789101112]]T = \begin{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \end{bmatrix}T=[[14​25​36​],[710​811​912​]​]

RGB Image Example (Shape: (height, width,3)):

Shape: (2,3,3)

T=[[255000255000255],[128000128000128]]T = \begin{bmatrix} \begin{bmatrix} 255 & 0 & 0 \\ 0 & 255 & 0 \\ 0 & 0 & 255 \end{bmatrix}, \begin{bmatrix} 128 & 0 & 0 \\ 0 & 128 & 0 \\ 0 & 0 & 128 \end{bmatrix} \end{bmatrix}T=​​25500​02550​00255​​,​12800​01280​00128​​​​

3. Mathematical Operations with Shapes

3.1 Reshaping Operations

Original shape: (4,) → vector [1234]\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}​1234​​

Reshaped to (2,3) → matrix [123456]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}[14​25​36​]

Reshaped to (3,2) → matrix [123456]\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}​135​246​​

3.2 Shape Compatibility in Operations

Matrix Multiplication (A×BA×BA×B):

A shape: (m,n)(m,n)(m,n)

B shape: (n,p)(n,p)(n,p)

Result shape: (m,p)(m,p)(m,p)

Example: (2,3)×(3,2)→(2,2)(2,3) \times (3,2) \rightarrow (2,2)(2,3)×(3,2)→(2,2)

[123456]×[789101112][5864139154]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}[14​25​36​]×​7911​81012​​[58139​64154​]

3.3 Broadcasting Rules

Vector + Scalar: Shape (3,) + () → (3,)

[123]+4=[467]\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 4 = \begin{bmatrix} 4 \\ 6 \\ 7 \end{bmatrix}​123​​+4=​467​​

Matrix + Vector: Shape (2,3) + (3,) → (2,3)

[123456]+[111]=[234567]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}[14​25​36​]+​111​​=[25​36​47​]

4. Special Tensor Shapes in Mathematics

4.1 Square Matrices (n,n)

Shape: (2,2)

[abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[ac​bd​]

Shape: (3,3)

[abcdefghi]\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}​adg​beh​cfi​​

4.2 Diagonal Matrices

Shape: (3,3)

[λ1000λ2000λ3]\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}​λ1​00​0λ2​0​00λ3​​​

4.3 Symmetric Tensors

This shows a symmetric matrix where the entries satisfy bij=bjib_{ij} = b_{ji}bij​=bji​ .

Shape: (3,3)

[abcbdecef]\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}​abc​bde​cef​​

5. Applications with Specific Shapes

5.1 Physics Examples

Stress Tensor (Shape: (3,3)):

[σxxσxyσxzσyxσyyσyzσzxσzyσzz]\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}​σxx​σyx​σzx​​σxy​σyy​σzy​​σxz​σyz​σzz​​​

Electromagnetic Field Tensor (Shape: (4,4)):

[0−Ex−Ey−EzEx0−BzByEyBz0−BxEz−ByBx0]\begin{bmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{bmatrix}​0Ex​Ey​Ez​​−Ex​0Bz​−By​​−Ey​−Bz​0Bx​​−Ez​By​−Bx​0​​

5.2 Linear Algebra Examples

yRotation Matrix (Shape: (3,3)):
[cos θ  -sin θ  0]
[sin θ   cos θ  0]
[0       0      1]

Projection Matrix (Shape: (n,n)):
P = A(AᵀA)⁻¹Aᵀ

5.3 Data Science Examples

Feature Matrix (Shape: (samples, features)):
Shape: (3,4)
[x₁₁ x₁₂ x₁₃ x₁₄]
[x₂₁ x₂₂ x₂₃ x₂₄]
[x₃₁ x₃₂ x₃₃ x₃₄]

Neural Network Layer (Shape: (batch_size, neurons)):
Shape: (2,3)
[n₁₁ n₁₂ n₁₃]
[n₂₁ n₂₂ n₂₃]

6. Shape Transformations

6.1 Transpose Operation

Original Shape: (2,3)

[123456]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}[14​25​36​]

Transposed Shape: (3,2)

[142536]\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}​123​456​​

6.2 Flatten Operation

Original Shape: (2,2,2)

[[1234],[5678]]\begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \end{bmatrix}[[13​24​],[57​68​]​]

Flattened Shape: (8,)

[12345678]\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}[1​2​3​4​5​6​7​8​]

PreviousTensor RankNextTensor Operations

Last updated 1 month ago