Artificial Intelligence with PHP
  • Getting Started
    • Introduction
    • Audience
    • How to Read This Book
    • Glossary
    • Contributors
    • Resources
    • Changelog
  • Artificial Intelligence
    • Introduction
    • Overview of AI
      • History of AI
      • How Does AI Work?
      • Structure of AI
      • Will AI Take Over the World?
      • Types of AI
        • Limited Memory AI
        • Reactive AI
        • Theory of Mind AI
        • Self-Aware AI
    • AI Capabilities in PHP
      • Introduction to LLM Agents PHP SDK
      • Overview of AI Libraries in PHP
    • AI Agents
      • Introduction to AI Agents
      • Structure of AI Agent
      • Components of AI Agents
      • Types of AI Agents
      • AI Agent Architecture
      • AI Agent Environment
      • Application of Agents in AI
      • Challenges in AI Agent Development
      • Future of AI Agents
      • Turing Test in AI
      • LLM AI Agents
        • Introduction to LLM AI Agents
        • Implementation in PHP
          • Sales Analyst Agent
          • Site Status Checker Agent
    • Theoretical Foundations of AI
      • Introduction to Theoretical Foundations of AI
      • Problem Solving in AI
        • Introduction
        • Types of Search Algorithms
          • Comparison of Search Algorithms
          • Informed (Heuristic) Search
            • Global Search
              • Beam Search
              • Greedy Search
              • Iterative Deepening A* Search
              • A* Search
                • A* Graph Search
                • A* Graph vs A* Tree Search
                • A* Tree Search
            • Local Search
              • Hill Climbing Algorithm
                • Introduction
                • Best Practices and Optimization
                • Practical Applications
                • Implementation in PHP
              • Simulated Annealing Search
              • Local Beam Search
              • Genetic Algorithms
              • Tabu Search
          • Uninformed (Blind) Search
            • Global Search
              • Bidirectional Search (BDS)
              • Breadth-First Search (BFS)
              • Depth-First Search (DFS)
              • Iterative Deepening Depth-First Search (IDDFS)
              • Uniform Cost Search (UCS)
            • Local Search
              • Depth-Limited Search (DLS)
              • Random Walk Search (RWS)
          • Adversarial Search
          • Means-Ends Analysis
      • Knowledge & Uncertainty in AI
        • Knowledge-Based Agents
        • Knowledge Representation
          • Introduction
          • Approaches to KR in AI
          • The KR Cycle in AI
          • Types of Knowledge in AI
          • KR Techniques
            • Logical Representation
            • Semantic Network Representation
            • Frame Representation
            • Production Rules
        • Reasoning in AI
        • Uncertain Knowledge Representation
        • The Wumpus World
        • Applications and Challenges
      • Cybernetics and AI
      • Philosophical and Ethical Foundations of AI
    • Mathematics for AI
      • Computational Theory in AI
      • Logic and Reasoning
        • Classification of Logics
        • Formal Logic
          • Propositional Logic
            • Basics of Propositional Logic
            • Implementation in PHP
          • Predicate Logic
            • Basics of Predicate Logic
            • Implementation in PHP
          • Second-order and Higher-order Logic
          • Modal Logic
          • Temporal Logic
        • Informal Logic
        • Semi-formal Logic
      • Set Theory and Discrete Mathematics
      • Decision Making in AI
    • Key Application of AI
      • AI in Astronomy
      • AI in Agriculture
      • AI in Automotive Industry
      • AI in Data Security
      • AI in Dating
      • AI in E-commerce
      • AI in Education
      • AI in Entertainment
      • AI in Finance
      • AI in Gaming
      • AI in Healthcare
      • AI in Robotics
      • AI in Social Media
      • AI in Software Development
      • AI in Adult Entertainment
      • AI in Criminal Justice
      • AI in Criminal World
      • AI in Military Domain
      • AI in Terrorist Activities
      • AI in Transforming Our World
      • AI in Travel and Transport
    • Practice
  • Machine Learning
    • Introduction
    • Overview of ML
      • History of ML
        • Origins and Early Concepts
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • Key Terms and Principles
      • Machine Learning Life Cycle
      • Problems and Challenges
    • ML Capabilities in PHP
      • Overview of ML Libraries in PHP
      • Configuring an Environment for PHP
        • Direct Installation
        • Using Docker
        • Additional Notes
      • Introduction to PHP-ML
      • Introduction to Rubix ML
    • Mathematics for ML
      • Linear Algebra
        • Scalars
          • Definition and Operations
          • Scalars with PHP
        • Vectors
          • Definition and Operations
          • Vectors in Machine Learning
          • Vectors with PHP
        • Matrices
          • Definition and Types
          • Matrix Operations
          • Determinant of a Matrix
          • Inverse Matrices
          • Cofactor Matrices
          • Adjugate Matrices
          • Matrices in Machine Learning
          • Matrices with PHP
        • Tensors
          • Definition of Tensors
          • Tensor Properties
            • Tensor Types
            • Tensor Dimension
            • Tensor Rank
            • Tensor Shape
          • Tensor Operations
          • Practical Applications
          • Tensors in Machine Learning
          • Tensors with PHP
        • Linear Transformations
          • Introduction
          • LT with PHP
          • LT Role in Neural Networks
        • Eigenvalues and Eigenvectors
        • Norms and Distances
        • Linear Algebra in Optimization
      • Calculus
      • Probability and Statistics
      • Information Theory
      • Optimization Techniques
      • Graph Theory and Networks
      • Discrete Mathematics and Combinatorics
      • Advanced Topics
    • Data Fundamentals
      • Data Types and Formats
        • Data Types
        • Structured Data Formats
        • Unstructured Data Formats
        • Implementation with PHP
      • General Data Processing
        • Introduction
        • Storage and Management
          • Data Security and Privacy
          • Data Serialization and Deserialization in PHP
          • Data Versioning and Management
          • Database Systems for AI
          • Efficient Data Storage Techniques
          • Optimizing Data Retrieval for AI Algorithms
          • Big Data Considerations
            • Introduction
            • Big Data Techniques in PHP
      • ML Data Processing
        • Introduction
        • Types of Data in ML
        • Stages of Data Processing
          • Data Acquisition
            • Data Collection
            • Ethical Considerations in Data Preparation
          • Data Cleaning
            • Data Cleaning Examples
            • Data Cleaning Types
            • Implementation with PHP
          • Data Transformation
            • Data Transformation Examples
            • Data Transformation Types
            • Implementation with PHP ?..
          • Data Integration
          • Data Reduction
          • Data Validation and Testing
            • Data Splitting and Sampling
          • Data Representation
            • Data Structures in PHP
            • Data Visualization Techniques
          • Typical Problems with Data
    • ML Algorithms
      • Classification of ML Algorithms
        • By Methods Used
        • By Learning Types
        • By Tasks Resolved
        • By Feature Types
        • By Model Depth
      • Supervised Learning
        • Regression
          • Linear Regression
            • Types of Linear Regression
            • Finding Best Fit Line
            • Gradient Descent
            • Assumptions of Linear Regression
            • Evaluation Metrics for Linear Regression
            • How It Works by Math
            • Implementation in PHP
              • Multiple Linear Regression
              • Simple Linear Regression
          • Polynomial Regression
            • Introduction
            • Implementation in PHP
          • Support Vector Regression
        • Classification
        • Recommendation Systems
          • Matrix Factorization
          • User-Based Collaborative Filtering
      • Unsupervised Learning
        • Clustering
        • Dimension Reduction
        • Search and Optimization
        • Recommendation Systems
          • Item-Based Collaborative Filtering
          • Popularity-Based Recommendations
      • Semi-Supervised Learning
        • Regression
        • Classification
        • Clustering
      • Reinforcement Learning
      • Distributed Learning
    • Integrating ML into Web
      • Open-Source Projects
      • Introduction to EasyAI-PHP
    • Key Applications of ML
    • Practice
  • Neural Networks
    • Introduction
    • Overview of NN
      • History of NN
      • Basic Components of NN
        • Activation Functions
        • Connections and Weights
        • Inputs
        • Layers
        • Neurons
      • Problems and Challenges
      • How NN Works
    • NN Capabilities in PHP
    • Mathematics for NN
    • Types of NN
      • Classification of NN Types
      • Linear vs Non-Linear Problems in NN
      • Basic NN
        • Simple Perceptron
        • Implementation in PHP
          • Simple Perceptron with Libraries
          • Simple Perceptron with Pure PHP
      • NN with Hidden Layers
      • Deep Learning
      • Bayesian Neural Networks
      • Convolutional Neural Networks (CNN)
      • Recurrent Neural Networks (RNN)
    • Integrating NN into Web
    • Key Applications of NN
    • Practice
  • Natural Language Processing
    • Introduction
    • Overview of NLP
      • History of NLP
        • Ancient Times
        • Medieval Period
        • 15th-16th Century
        • 17th-18th Century
        • 19th Century
        • 20th Century
        • 21st Century
        • Coming Years
      • NLP and Text
      • Key Concepts in NLP
      • Common Challenges in NLP
      • Machine Learning Role in NLP
    • NLP Capabilities in PHP
      • Overview of NLP Libraries in PHP
      • Challenges in NLP with PHP
    • Mathematics for NLP
    • NLP Techniques
      • Basic Text Processing with PHP
      • NLP Workflow
      • Popular Tools and Frameworks for NLP
      • Techniques and Algorithms in NLP
        • Basic NLP Techniques
        • Advanced NLP Techniques
      • Advanced NLP Topics
    • Integrating NLP into Web
    • Key Applications of NLP
    • Practice
  • Computer Vision
    • Introduction
  • Overview of CV
    • History of CV
    • Common Use Cases
  • CV Capabilities in PHP
  • Mathematics for CV
  • CV Techniques
  • Integrating CV into Web
  • Key Applications of CV
  • Practice
  • Robotics
    • Introduction
  • Overview of Robotics
    • History and Evolution of Robotics
    • Core Components
      • Sensors (Perception)
      • Actuators (Action)
      • Controllers (Processing and Logic)
    • The Role of AI in Robotics
      • Object Detection and Recognition
      • Path Planning and Navigation
      • Decision Making and Learning
  • Robotics Capabilities in PHP
  • Mathematics for Robotics
  • Building Robotics
  • Integration Robotics into Web
  • Key Applications of Robotics
  • Practice
  • Expert Systems
    • Introduction
    • Overview of ES
      • History of ES
        • Origins and Early ES
        • Milestones in the Evolution of ES
        • Expert Systems in Modern AI
      • Core Components and Architecture
      • Challenges and Limitations
      • Future Trends
    • ES Capabilities in PHP
    • Mathematics for ES
    • Building ES
      • Knowledge Representation Approaches
      • Inference Mechanisms
      • Best Practices for Knowledge Base Design and Inference
    • Integration ES into Web
    • Key Applications of ES
    • Practice
  • Cognitive Computing
    • Introduction
    • Overview of CC
      • History of CC
      • Differences Between CC and AI
    • CC Compatibilities in PHP
    • Mathematics for CC
    • Building CC
      • Practical Implementation
    • Integration CC into Web
    • Key Applications of CC
    • Practice
  • AI Ethics and Safety
    • Introduction
    • Overview of AI Ethics
      • Core Principles of AI Ethics
      • Responsible AI Development
      • Looking Ahead: Ethical AI Governance
    • Building Ethics & Safety AI
      • Fairness, Bias, and Transparency
        • Bias in AI Models
        • Model Transparency and Explainability
        • Auditing, Testing, and Continuous Monitoring
      • Privacy and Security in AI
        • Data Privacy and Consent
        • Safety Mechanisms in AI Integration
        • Preventing and Handling AI Misuse
      • Ensuring AI Accountability
        • Ethical AI in Decision Making
        • Regulations & Compliance
        • AI Risk Assessment
    • Key Applications of AI Ethics
    • Practice
  • Epilog
    • Summing-up
Powered by GitBook
On this page
  • Implementation of Tensor Operations with PHP
  • Standard Purposes
  • Scientific and Engineering Purposes
  1. Machine Learning
  2. Mathematics for ML
  3. Linear Algebra
  4. Tensors

Tensors with PHP

Implementation of Tensor Operations with PHP

Standard Purposes

In PHP it can be written as a class Tensor with implementation of a set of matrix operations.

This class is a PHP implementation of tensor operations, such as addition, subtraction, multiplication, division, and transposition. Additionally, it can handle element-wise transformations (e.g., exponentiation, logarithmic operations), making it easier to preprocess and manipulate data directly in PHP. This functionality is essential for PHP developers who want to implement machine learning models or perform matrix-heavy computations without needing to rely on external languages or software.

Example of Class Tensor
class Tensor {
    private array $data;
    private array $shape;

    public function __construct(array $data) {
        if (!is_array($data)) {
            // Convert single values to array format
            $data = [$data];
        }
        $this->validateData($data);
        $this->data = $data;
        $this->shape = $this->calculateShape($data);
    }

    private function validateData(array $data): void {
        if (empty($data)) {
            throw new InvalidArgumentException("Tensor cannot be empty");
        }

        $this->validateNestedArrays($data);
    }

    private function validateNestedArrays(array $arr, ?int $depth = null): void {
        $firstLength = count($arr);

        foreach ($arr as $element) {
            if (is_array($element)) {
                if ($depth === null) {
                    $depth = count($element);
                } elseif (count($element) !== $depth) {
                    throw new InvalidArgumentException("Inconsistent dimensions in tensor");
                }
                $this->validateNestedArrays($element, $depth);
            }
        }
    }

    private function calculateShape(array $data): array {
        $shape = [];
        $current = $data;

        while (is_array($current)) {
            $shape[] = count($current);
            $current = $current[0] ?? null;
        }

        return $shape;
    }

    public function shape(): array {
        return $this->shape;
    }

    public function reshape(array $newShape): self {
        $totalElements = array_product($this->shape);
        $newTotalElements = array_product($newShape);

        if ($totalElements !== $newTotalElements) {
            throw new InvalidArgumentException("Cannot reshape tensor: incompatible dimensions");
        }

        $flatData = $this->flatten($this->data);
        $reshaped = $this->reshapeArray($flatData, $newShape, 0);

        return new self($reshaped);
    }

    private function flatten(array $array): array {
        $result = [];
        array_walk_recursive($array, function($value) use (&$result) {
            $result[] = $value;
        });
        return $result;
    }

    private function reshapeArray(array $flatData, array $shape, int $offset): array {
        if (empty($shape)) {
            throw new InvalidArgumentException("Shape cannot be empty");
        }

        $currentDim = array_shift($shape);
        $subSize = empty($shape) ? 1 : array_product($shape);
        $result = [];

        for ($i = 0; $i < $currentDim; $i++) {
            if (empty($shape)) {
                $result[] = $flatData[$offset + $i];
            } else {
                $result[] = $this->reshapeArray($flatData, $shape, $offset + ($i * $subSize));
            }
        }

        return $result;
    }

    public function add(Tensor $other): self {
        if ($this->shape !== $other->shape) {
            throw new InvalidArgumentException("Tensors must have the same shape for addition");
        }

        $result = $this->elementWiseOperation($this->data, $other->data, fn($a, $b) => $a + $b);
        return new self($result);
    }

    public function subtract(Tensor $other): self {
        if ($this->shape !== $other->shape) {
            throw new InvalidArgumentException("Tensors must have the same shape for subtraction");
        }

        $result = $this->elementWiseOperation($this->data, $other->data, fn($a, $b) => $a - $b);
        return new self($result);
    }

    public function multiply(Tensor $other): self {
        if ($this->shape !== $other->shape) {
            throw new InvalidArgumentException("Tensors must have the same shape for element-wise multiplication");
        }

        $result = $this->elementWiseOperation($this->data, $other->data, fn($a, $b) => $a * $b);
        return new self($result);
    }

    public function divide(Tensor $other): self {
        if ($this->shape !== $other->shape) {
            throw new InvalidArgumentException("Tensors must have the same shape for division");
        }

        $result = $this->elementWiseOperation($this->data, $other->data, function($a, $b) {
            if ($b == 0) {
                throw new DivisionByZeroError("Division by zero");
            }
            return $a / $b;
        });
        return new self($result);
    }

    private function elementWiseOperation(array $arr1, array $arr2, callable $operation): array {
        $result = [];

        foreach ($arr1 as $key => $value) {
            if (is_array($value)) {
                $result[$key] = $this->elementWiseOperation($value, $arr2[$key], $operation);
            } else {
                $result[$key] = $operation($value, $arr2[$key]);
            }
        }

        return $result;
    }

    public function matrixMultiply(Tensor $other): self {
        if (count($this->shape) !== 2 || count($other->shape) !== 2) {
            throw new InvalidArgumentException("Matrix multiplication requires 2D tensors");
        }

        if ($this->shape[1] !== $other->shape[0]) {
            throw new InvalidArgumentException("Incompatible dimensions for matrix multiplication");
        }

        $result = [];
        for ($i = 0; $i < $this->shape[0]; $i++) {
            $result[$i] = [];
            for ($j = 0; $j < $other->shape[1]; $j++) {
                $sum = 0;
                for ($k = 0; $k < $this->shape[1]; $k++) {
                    $sum += $this->data[$i][$k] * $other->data[$k][$j];
                }
                $result[$i][$j] = $sum;
            }
        }

        return new self($result);
    }

    public function dotProduct(Tensor $other): float {
        // Ensure both tensors are vectors (1D)
        if (count($this->shape) !== 1 || count($other->shape) !== 1) {
            throw new InvalidArgumentException("Dot product requires 1D tensors (vectors)");
        }

        // Check dimensions match
        if ($this->shape[0] !== $other->shape[0]) {
            throw new InvalidArgumentException("Vectors must have the same dimension");
        }

        $result = 0;
        for ($i = 0; $i < $this->shape[0]; $i++) {
            $result += $this->data[$i] * $other->data[$i];
        }

        return $result;
    }

    public function transpose(): self {
        if (count($this->shape) !== 2) {
            throw new InvalidArgumentException("Transpose operation is only supported for 2D tensors");
        }

        $result = [];
        for ($i = 0; $i < $this->shape[1]; $i++) {
            for ($j = 0; $j < $this->shape[0]; $j++) {
                $result[$i][$j] = $this->data[$j][$i];
            }
        }

        return new self($result);
    }

    public function determinant(): float {
        if (count($this->shape) !== 2 || $this->shape[0] !== $this->shape[1]) {
            throw new InvalidArgumentException("Determinant requires a square matrix");
        }

        $n = $this->shape[0];

        if ($n === 1) {
            return $this->data[0][0];
        }

        if ($n === 2) {
            return $this->data[0][0] * $this->data[1][1] - $this->data[0][1] * $this->data[1][0];
        }

        $det = 0;
        for ($j = 0; $j < $n; $j++) {
            $det += pow(-1, $j) * $this->data[0][$j] * $this->getMinor(0, $j)->determinant();
        }

        return $det;
    }

    private function getMinor(int $row, int $col): self {
        $minor = [];
        $n = $this->shape[0];
        $r = 0;

        for ($i = 0; $i < $n; $i++) {
            if ($i === $row) continue;
            $minor[$r] = [];
            $c = 0;
            for ($j = 0; $j < $n; $j++) {
                if ($j === $col) continue;
                $minor[$r][$c] = $this->data[$i][$j];
                $c++;
            }
            $r++;
        }

        return new self($minor);
    }

    public function exp(): self {
        return $this->applyFunction(fn($x) => exp($x));
    }

    public function log(): self {
        return $this->applyFunction(fn($x) => log($x));
    }

    public function power(float $n): self {
        return $this->applyFunction(fn($x) => pow($x, $n));
    }

    private function applyFunction(callable $func): self {
        $result = $this->applyFunctionToArray($this->data, $func);
        return new self($result);
    }

    private function applyFunctionToArray(array $arr, callable $func): array {
        $result = [];
        foreach ($arr as $key => $value) {
            if (is_array($value)) {
                $result[$key] = $this->applyFunctionToArray($value, $func);
            } else {
                $result[$key] = $func($value);
            }
        }
        return $result;
    }

    public function getData(): array {
        return $this->data;
    }

    // Helper method to convert tensor to string for debugging
    public function __toString(): string {
        return json_encode($this->data, JSON_PRETTY_PRINT);
    }
}

Example of Use:

Create Tensor

echo "Creating Tensors:";

// Create a scalar (0D tensor)
$scalar = new Tensor([[5]]);
echo "Scalar: ";
print_r($scalar->getData());

// Create a vector (1D tensor)
$vector = new Tensor([1, 2, 3, 4]);
echo "Vector: ";
print_r($vector->getData());

// Create a matrix (2D tensor)
$matrix = new Tensor([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
]);

echo "Matrix: ";
print_r($matrix->getData());

// Create a 3D tensor
$tensor3D = new Tensor([
    [
        [1, 2],
        [3, 4]
    ],
    [
        [5, 6],
        [7, 8]
    ]
]);

echo "3D Tensor: ";
print_r($tensor3D->getData());

You may find more examples in our example repository.

Scientific and Engineering Purposes

Implementing tensor operations in PHP is essential for machine learning, data science, and numerical computing applications. While PHP is traditionally known for web development, libraries like RubixML have brought advanced mathematical capabilities, including tensor operations, into the PHP ecosystem.

The RubixML Tensor library offers powerful tools for scientific and engineering applications by enabling complex numerical and data processing operations directly in PHP. Designed to handle multidimensional arrays, the Tensor library supports a broad range of linear algebra operations, making it especially useful in fields like physics, data science, and engineering, where matrix manipulations and vectorized computations are routine.

PreviousTensors in Machine LearningNextLinear Transformations

Last updated 1 month ago

To try this code yourself, install the example files from the official GitHub repository:

To try Rubix Tensor PHP code yourself, install the library from the official GitHub repository:

https://github.com/apphp/ai-with-php-examples
https://github.com/RubixML/Tensor